Synaptic structure and transmitter release in crustacean phasic and tonic motor neurons.

نویسندگان

  • M Msghina
  • C K Govind
  • H L Atwood
چکیده

The paired phasic and tonic motor neurons supplying the extensor muscle in the crayfish leg were investigated to establish whether differences in synaptic structure could account for large differences in transmitter release at the neuromuscular junctions. Nerve terminals with transmitter release that had been assessed from recordings made with a focal "macro-patch" electrode were subsequently labeled, processed for electron microscopy, and reconstructed from serial sections. At a frequency of 1 Hz, quantal contents of phasic terminals were 90-1300 times greater than those of tonic terminals when both were recorded at the same location. At higher frequencies, facilitation was pronounced at tonic, but not phasic, terminals. Reconstructions of recording sites showed that both phasic and tonic terminals possessed many small synapses, usually with one or more structurally defined active zones. Mean synaptic contact area was larger for tonic terminals, and the number of individual synapses per length of nerve terminal was also larger. Active zones were not different in size for the two terminals. At low frequencies, quantal emission per synapse is much greater for phasic terminals. The higher quantal content of phasic terminals and their synapses cannot reasonably be accounted for by more or larger synapses or active zones at the recording sites. Because structural features alone are not likely to produce the very large differences in quantal content of phasic and tonic terminals observed at low stimulation frequencies, it is likely that other properties of the nerve terminal are largely responsible for these differences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crustacean Phasic and Tonic Motor Neurons1

SYNOPSIS. Crustacean motor neurons subserving locomotion are specialized for the type of activity in which they normally participate. Neurons responsible for maintained activity (‘tonic’ neurons) support moderate to high frequencies of nerve impulses intermittently or continuously during locomotion, while those recruited for short-lasting rapid responses (‘phasic’ neurons) generally fire a few ...

متن کامل

Calcium sensitivity of neurotransmitter release differs at phasic and tonic synapses.

The efficacy of synaptic transmission varies greatly among synaptic contacts. We have explored the origins of differences between phasic and tonic crustacean neuromuscular junctions. Synaptic boutons of a phasic motor neuron release three orders of magnitude more quanta to a single action potential and show strong depression to a train, whereas tonic synapses are nearly unresponsive to single a...

متن کامل

Activity-dependent development of synaptic varicosities at crayfish motor terminals.

Tonically and phasically active crayfish motor terminals have well-characterized differences in synaptic physiology. During repetitive activation, the tonic terminals show facilitation and no depression, while the phasic terminals show dramatic synaptic fatigue. It has been proposed that this greater capacity for transmitter release from tonic terminals may be largely due to the presence of lar...

متن کامل

Calcium entry related to active zones and differences in transmitter release at phasic and tonic synapses.

Synaptic functional differentiation of crayfish phasic and tonic motor neurons is large. For one impulse, quantal release of neurotransmitter is typically 100-1000 times higher for phasic synapses. We tested the hypothesis that differences in synaptic strength are determined by differences in synaptic calcium entry. Calcium signals were measured with the injected calcium indicator dyes Calcium ...

متن کامل

Visible evidence for differences in synaptic effectiveness with activity-dependent vesicular uptake and release of FM1-43.

Activity-dependent uptake and release of the fluorescent probe FM1-43 were used to compare synaptic performance (rates of transmitter release and synaptic vesicle turnover) at different frequencies in phasic and tonic motor neurons innervating the crayfish leg extensor muscle and in the tonic motor neuron of the opener muscle. The phasic extensor motor neuron, which has a high quantal content o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 4  شماره 

صفحات  -

تاریخ انتشار 1998